

Physics Spectrum Journal

Volume 01 Issue 01, January 2026

P-ISSN: xxxx-xxxx, E-ISSN: xxxx-xxxx

Synthesis Methods of Fe_3O_4 Nanoparticles: A Systematic Review of Techniques, Parameters, and Applications

S. Eka Putra^a, E. Evi^a, N. Aisyah Humairah^b, H. Husain^{a,c*}

^aDepartment of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Makassar, 90222, Indonesia

^bDepartment of Physics, Faculty of Teacher Training and Education, Universitas Sulawesi Barat, Majene, 91412, Indonesia.

^cLaboratory of Natural Materials and Magnetics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Makassar 90224, Indonesia

Corresponding Authors E-mail: husain.physics@unm.ac.id

Article Info

Article info:

Received: xx-xx-20xx

Revised: xx-xx-20xx

Accepted: xx-xx-20xx

Keywords:

Fe_3O_4 NPs; co-precipitation; sol-gel; hydrothermal; green synthesis; nanotechnology applications

How To Cite:

xxxxxx

DOI:

xxxxx

Abstract

Fe_3O_4 nanoparticles (Fe_3O_4 NPs) are nanoscale materials with remarkable superparamagnetic properties, making them suitable for various applications, including biomedical, catalysis, and electronic devices. This article systematically reviews several synthesis methods of Fe_3O_4 NPs, such as co-precipitation, sol-gel, hydrothermal, and green synthesis. The main focus is on the mechanisms of each method, the critical parameters influencing the synthesis outcomes, as well as their advantages and limitations. The discussion also addresses how these parameters affect particle size, morphology, and magnetic properties. This review aims to provide comprehensive insights for researchers in selecting the most appropriate synthesis method for specific applications and identifying the challenges that need to be addressed in the development of Fe_3O_4 NPs. These findings are expected to accelerate innovation and optimization in the production of Fe_3O_4 NPs for various demands.

xxxxxxxxxx.

1. Introduction

Over the past decade, Fe_3O_4 NPs have attracted significant attention among scientists and engineers due to their unique magnetic properties and wide-ranging potential applications in modern technology. These nanoparticles exhibit superparamagnetism, chemical stability, and tunable functionalization, making them highly versatile materials for various applications, including biomedical uses as MRI contrast agents, catalysis to accelerate chemical reactions, and magnetic data storage devices. In addition, Fe_3O_4 NPs have demonstrated great potential in wastewater

treatment and magnetic separation, rendering them relevant in the context of environmentally friendly technologies. However, to optimize their properties and applications, a thorough understanding of their synthesis methods is essential.

The synthesis method of Fe_3O_4 NPs plays a crucial role in determining the physical and chemical characteristics of the resulting material. Several techniques have been developed to produce Fe_3O_4 NPs with controllable size, morphology, and magnetic properties, including co-precipitation, thermal decomposition, hydrothermal, and green synthesis methods. Each method has advantages and limitations that influence the final material properties. For instance, co-precipitation is widely used due to its simplicity and cost-effectiveness, but it often fails to yield particles with uniform size distribution. Conversely, the hydrothermal method, although requiring specialized equipment and extreme reaction conditions, is capable of producing nanoparticles with high crystallinity and optimal magnetic properties. Green synthesis methods, which employ natural extracts as reducing and stabilizing agents, are also gaining attention due to their environmental benefits.

In this article, various synthesis methods of Fe_3O_4 NPs will be comprehensively reviewed, covering reaction mechanisms, critical synthesis parameters, as well as the advantages and disadvantages of each approach. The review will also highlight recent studies over the past decade that demonstrate innovations in synthesis techniques and applications. For example, studies by Laurent et al. (2008) and Li et al. (2012) revealed how parameters such as temperature, pH, and reaction time significantly influence the size and magnetic properties of Fe_3O_4 NPs [1]. Furthermore, research by Husain et al. (2026) emphasized the potential of integrating Fe_3O_4 NPs with graphene oxide (GO) to enhance material performance in specific applications, such as electromagnetic wave absorbers and biomedical materials [2].

One of the major challenges in Fe_3O_4 NPs synthesis is ensuring reproducibility and stability, especially in applications requiring high precision, such as in the biomedical field. This underscores the importance of developing synthesis methods that not only produce high-quality materials but are also environmentally friendly and cost-effective. Green synthesis methods employing natural extracts, such as plant-based reducing agents, have emerged as a rapidly growing area of research. For instance, a study demonstrated that eucalyptus leaf extract can be used as a reducing agent to produce Fe_3O_4 NPs with excellent magnetic properties while minimizing environmental impact [3].

Moreover, advances in characterization techniques such as electron microscopy and X-ray diffraction have enabled more detailed analyses of the structure, morphology, and magnetic properties of Fe_3O_4 NPs. These techniques not only facilitate an understanding of the synthesis mechanisms but also provide insights into how reaction parameters can be modified to achieve desired outcomes. For example, a study showed how calcination temperature variations in the sol-gel method can be used to control particle size and magnetic properties [4]. This article aims to provide a comprehensive guide for researchers and practitioners in selecting the most suitable synthesis method for specific applications of Fe_3O_4 NPs. Additionally, it seeks to identify challenges that must be addressed in material development, such as large-scale production, long-term stability, and environmental impact. By addressing these aspects, innovations in Fe_3O_4 NPs synthesis are expected to advance, opening new opportunities for broader and more effective applications.

2. Methods

The synthesis of Fe_3O_4 NPs can be achieved through various approaches to tailor specific properties and applications. This review focuses on four main synthesis methods: co-precipitation, hydrothermal, sol-gel, and green synthesis.

The co-precipitation method is among the most widely used due to its simplicity and cost-effectiveness. It involves the reaction between ferrous and ferric salts in an alkaline medium, resulting in the precipitation of Fe_3O_4 NPs. Reaction parameters such as pH, temperature, and reactant concentration play a crucial role in determining particle size and magnetic properties. Although straightforward, co-precipitation often requires post-synthesis modifications to achieve the desired properties.

The hydrothermal method employs high temperature and pressure conditions to synthesize Fe_3O_4 NPs with improved crystallinity and uniform morphology. This approach enables precise control over nanoparticle size and shape by adjusting parameters such as reaction temperature, duration, and precursor concentration. However, the need for specialized equipment and longer reaction times may limit large-scale production.

The sol-gel process is a versatile technique involving the transition of a colloidal solution (sol) into a solid gel phase. This method is advantageous for producing Fe_3O_4 NPs with controlled porosity and homogeneous composition. By modifying precursor types and synthesis conditions, sol-gel processing can yield nanoparticles with properties tailored for specific applications. Nevertheless, this method often involves the use of organic solvents and requires careful handling to ensure reproducibility.

Green synthesis has gained considerable attention as an environmentally friendly alternative for producing Fe_3O_4 NPs. This method utilizes natural precursors such as plant extracts, algae, and microorganisms as reducing and stabilizing agents. Green synthesis not only minimizes environmental impact but also enhances nanoparticle biocompatibility, making it highly suitable for biomedical applications. Despite these advantages, challenges remain in achieving consistent quality and scaling up production.

Results and Discussion

Research on Fe_3O_4 NPs synthesis has shown significant progress in understanding synthesis parameters that influence the physical and chemical properties of nanoparticles. Using the co-precipitation method, appropriate molar ratios of Fe(II) and Fe(III) ions, along with precise control of temperature and pH, have been demonstrated to yield smaller nanoparticles with uniform size distribution and high saturation magnetization [5]. For instance, Krzysztof et. al. (2021) reported that increasing pH during synthesis improved crystallinity and magnetic properties [6]. Despite its limitations in particle size reproducibility, co-precipitation remains a preferred method due to its ease of use and low cost.

The hydrothermal method, which relies on high temperature and pressure, produces Fe_3O_4 NPs with higher crystallinity and better size distribution compared to co-precipitation. The reaction temperatures above 180°C and longer reaction times contributed to the formation of well-defined cubic spinel structures [3]. An additional advantage of this method is its ability to generate monodisperse particles, which are highly desirable in biomedical applications such as MRI contrast agents and drug delivery systems. However, the requirement for specialized equipment increases the initial production cost.

The sol-gel process exhibits high flexibility in producing nanoparticles with specific properties. By varying precursors, such as metal alkoxides, this method can produce stable Fe_3O_4 NPs with high porosity. Win et al. (2021) highlighted that modifications during the sol-gel process, including controlled calcination

temperature, resulted in particles smaller than 10 nm with optimal magnetic properties. Nevertheless, the use of organic solvents in this method necessitates special handling due to potential hazards [7].

Green synthesis has attracted increasing interest as an eco-friendly approach. In this method, plant extracts act as reducing and stabilizing agents, replacing hazardous synthetic chemicals. Krzysztof et. al. (2021) reported that tea leaf extract produced nanoparticles with uniform morphology and inherent antioxidant activity [6]. This approach also offers great potential for biomedical applications, as the resulting nanoparticles are more biocompatible. However, a major challenge lies in ensuring consistent results since the composition of plant extracts can vary depending on environmental conditions and extraction methods.

Further discussion highlights the importance of controlling synthesis parameters. For example, nanoparticle saturation magnetization is strongly influenced by particle size and crystallinity. Tao et al. (2020) observed that smaller particle sizes correlated with enhanced magnetic properties, but also promoted aggregation, reducing colloidal stability [5]. To address this, surface coating or chemical modification strategies are often required to improve nanoparticle stability and functionality.

In terms of applications, Fe_3O_4 NPs synthesized via co-precipitation are widely employed in wastewater treatment due to their high adsorption capacity for heavy metal ions. Conversely, hydrothermally synthesized Fe_3O_4 NPs are commonly used in biomedical fields, such as drug delivery and hyperthermia therapy, owing to their uniform morphology and stable magnetic properties [7]. Green synthesis offers innovative solutions for applications requiring high biocompatibility, although scaling up production remains a challenge.

Overall, advancements in Fe_3O_4 NPs synthesis reflect ongoing efforts to optimize nanoparticle properties for diverse applications. Remaining challenges, including scalability, reproducibility, and environmental impact, should be prioritized in future research. Integrating advanced technologies with sustainable approaches may allow Fe_3O_4 NPs synthesis to balance efficiency, sustainability, and wide-ranging applications.

Conclusions

This review concludes that the synthesis of Fe_3O_4 nanoparticles has advanced considerably, with various techniques offering distinct advantages and limitations. Methods such as co-precipitation, sol-gel, and hydrothermal synthesis are widely applied due to their ability to produce nanoparticles with controlled sizes and optimal magnetic properties. Critical parameters, including pH, temperature, and reaction time, must be optimized to achieve desired characteristics. Furthermore, Fe_3O_4 NPs hold great promise for applications in medicine, environmental remediation, and magnetic materials. Nonetheless, challenges related to scalability and nanoparticle stability require further attention to support broader industrial applications.

References

- [1] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. *Chem Rev* 2008;108:2064–110. <https://doi.org/10.1021/cr068445e>.
- [2] Husain H, Adi WA, Taryana Y, Daud P, Sulaeman Y, Sujiono EH, et al. Structural examination and magnetic-microwave absorption properties of Fe_3O_4 NPs/rGO composites derived from natural iron sand and coconut shell. *J Mater Sci Mater Electron* 2025;37:18. <https://doi.org/10.1007/s10854-025-16402-6>.

- [3] Mahdavi M, Namvar F, Ahmad MB, Mohamad R, Mahdavi M, Namvar F, et al. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe₃O₄) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract. *Molecules* 2013;18:5954–64. <https://doi.org/10.3390/molecules18055954>.
- [4] Sun S, Zeng H. Size-Controlled Synthesis of Magnetite Nanoparticles. *J Am Chem Soc* 2002;124:8204–5. <https://doi.org/10.1021/ja026501x>.
- [5] Tao Y, De Luca O, Singh B, Kamphuis AJ, Chen J, Rudolf P, et al. WO₃–SiO₂ nanomaterials synthesized using a novel template-free method in supercritical CO₂ as heterogeneous catalysts for epoxidation with H₂O₂. *Mater Today Chem* 2020;18:100373. <https://doi.org/10.1016/j.mtchem.2020.100373>.
- [6] Barbusiński K, Fajkis S, Szeląg B. Optimization of soapstock splitting process to reduce the concentration of impurities in wastewater. *J Clean Prod* 2021;280:124459. <https://doi.org/10.1016/j.jclepro.2020.124459>.
- [7] Win TT, Khan S, Bo B, Zada S, Fu P. Green synthesis and characterization of Fe₃O₄ nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. *Sci Rep* 2021;11:21996. <https://doi.org/10.1038/s41598-021-01538-2>.